Wednesday, December 20, 2023

Handbook for Dental Chair Side Assistants - Part 2

The second part of Bentham Science’s Dental Chair Side handbook set is now published,


The thorough and up-to-date Handbook for Dental Chair Side Assistants is a useful tool for teaching dental nurses and chair side assistants about dentistry. The fundamental sciences, clinical aspects of all dental specialties, and emergencies are covered in this unique practical manual. Simple and understandable explanations are given to the theoretical knowledge and background of dental anatomy, dental microbiology, oral pathology, dental materials, dental radiology, dental procedures, common medicines, issues, and dental instruments in dentistry practice. The materials are structured to provide the best possible balance between the theoretical underpinnings of the subject and clinical abilities. There are two sections to the book. Basic sciences are covered in Part 1, along with an overview of working in dental clinics. A section on medical crises and details on various dental specialty settings are included in Part 2.

Key features include:

- Clear and concise explanations for learners;

- Basic and useful advice for dental assistants and nurses;

- Information pertaining to all dental specialties

- Notes on cutting-edge dental technology are included.

Information is illustrated and made simple to understand with the help of vibrant clinical images, flowcharts, and tabular data. Each chapter has a thorough synopsis. The book is a helpful resource for undergraduate students who are working at clinics. Clinicians who are considering setting up a dental clinic will also find the content useful in training medical assistants about the basics of dental chair side procedures.

Learn more about this book here: https://www.eurekaselect.com/ebook_volume/3591

Toothbrushing tied to lower rates of pneumonia among hospitalized patients

 


free access to the full-text article:

 time https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/10.1001/jamainternmed.2023.6638?guestAccessKey=c5ed804f-b2a2-4e2c-974c-4f4991426605&utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_content=tfl&utm_term=121823



Friday, December 15, 2023

Newly discovered autoimmune disorder disrupts tooth enamel development

 


Celiac disease in children might be associated with sensitivity to a protein abundant in dairy products. The new findings may facilitate the disorder’s early detection and prevention

Peer-Reviewed Publication

WEIZMANN INSTITUTE OF SCIENCE

Enamel, the hardest and most mineral-rich substance in the human body, covers and protects our teeth. But in one of every 10 people – and in one third of children with celiac disease – this layer appears defective, failing to protect the teeth properly. As a result, teeth become more sensitive to heat, cold and sour food, and they may decay faster. In most cases, the cause of the faulty enamel production is unknown. 

Now, a study by Prof. Jakub Abramson and his team at the Weizmann Institute of Science, published recently in Nature, may shed light on this problem by revealing a new children’s autoimmune disorder that hinders proper tooth enamel development. The disorder is common in people with a rare genetic syndrome and in children with celiac disease. These findings could help develop strategies for early detection and prevention of the disorder.

Tooth enamel is made up primarily of mineral crystals that are gradually deposited on protein scaffolds during enamel development. Once the crystals are in place, the protein scaffold is dismantled, leaving behind a thin but exceptionally hard layer that covers and protects our teeth. A strange phenomenon was identified in people with a rare genetic disorder known as APS-1: Although the enamel layer of their milk teeth forms perfectly normally, something causes its faulty development in their permanent teeth. Since people with APS-1 suffer from a variety of autoimmune diseases, Abramson and his team hypothesized that the observed enamel defects may also be of an autoimmune nature – in other words, that their immune system could be attacking their own proteins or cells that are necessary for enamel formation. 

In general, autoimmune diseases occur when the immune system’s T cells or its antibodies mistakenly trigger an immune response against the body’s own cells or tissues. To prevent these incidents of “friendly fire,” T cells developing in the thymus gland need to first be educated to discriminate between the body’s own proteins and those of foreign origin. To this end, T cells are presented with short segments of self-proteins that make up various tissues and organs in the body. When a “poorly educated” T cell erroneously identifies a self-protein in the thymus as a target for attack, that T cell is labeled as dangerous and destroyed, so that it could not cause any damage after being released from the thymus.

This critical education step is impaired in APS-1 patients as a result of a mutation in a gene known as the autoimmune regulator (Aire). This gene is essential for the T cell education process: It produces a protein that is responsible for the collection of self-proteins presented to the T cells in the thymus. In their new study, scientists from Abramson’s lab in Weizmann’s Immunology and Regenerative Biology Department, led by research student Yael Gruper, sought to work out how mutations in the Aire gene lead to deficient tooth enamel production. The researchers discovered that, in the absence of Aire, proteins that play a key role in the development of enamel are not presented to the T cells in the thymus gland. As a result, T cells that are liable to identify these proteins as targets are released from the thymus, and they encourage the production of antibodies to the enamel proteins. But why do these autoantibodies damage permanent teeth and not baby teeth?

The answer to this question lies in the fact that milk teeth develop in the embryonic stage, when the immune system is not yet fully formed and cannot create autoantibodies. In contrast, the development of enamel on permanent teeth starts at birth and continues until around the age of six, when the immune system is sufficiently mature to thwart enamel development. Furthermore, the researchers found a correlation between high levels of antibodies to enamel proteins and the severity of the harm to enamel development in children with APS-1. This strengthens the assumption that the presence of enamel-specific autoantibodies in childhood can potentially lead to dental problems.

When the researchers looked into deficiencies in enamel development in people with other autoimmune diseases, they found a very similar phenomenon in children with celiac disease, a relatively common autoimmune disorder that affects around 1 percent of people in the West. When people with this disease are exposed to gluten, their immune system attacks and destroys the cellular layer lining the small intestine, leading to attacks on other self-proteins in the intestine.

In an attempt to understand how celiac disease, known to cause intestinal damage, may also cause damage to tooth enamel, the researchers first examined whether people with this disease have autoantibodies that attack enamel. They found that a large proportion of celiac patients have these autoantibodies, just as do people with APS-1. But the “education” that takes place in the thymus gland of these patients seems normal, so why do they develop these antibodies? The researchers hypothesized that some proteins are found in both the intestine and the dental tissue and that these proteins play an important role in the development of tooth enamel. In this case, the antibodies that identify proteins in the intestine might move through the bloodstream to the dental tissue, where they could start to disrupt the enamel production process.

Since many celiac patients had previously been found to develop sensitivity to cow’s milk, the researchers decided to focus on the k-casein protein, a major component of dairy products. Strikingly, they found that the human equivalent of k-casein is one of the main components of the scaffold necessary for enamel formation. This led them to hypothesize that antibodies produced in the intestines of celiac patients in response to certain food antigens, such k-casein, may subsequently cause collateral damage to the development of enamel in the teeth, similarly to the way in which antibodies against gluten can eventually trigger autoimmunity against the intestine.

Indeed, they discovered that most of the children diagnosed with celiac had high levels of antibodies against k-casein from cows’ milk, which in many cases can also react against k-casein’s human equivalent expressed in the enamel matrix. This means that in theory, the same antibodies that are produced in the intestine against the milk protein could act against the human k-casein in the teeth.

These findings could have implications for the food industry. “Similarly to the lessons learned from gluten, we can assume that the consumption of large quantities of dairy products could lead to the production of antibodies against k-casein,” Abramson explains. “This protein increases the amount of cheese that can be produced from milk, so the dairy industry deliberately raises its concentration in cow's milk. Our study, however, found that the milk k-casein is a potent immunogen, which may potentially trigger an immune response that can harm the body itself.”

Tooth enamel flaws are common, not just among people with celiac disease or APS-1. “Many people suffer from impaired tooth enamel development for unknown reasons,” Abramson says. “It is possible that the new disorder we discovered, along with the possibility of diagnosing it in a blood or saliva test, will give their condition a name. Most important, early diagnosis in children may enable preventive treatment in the future.”

Also participating in the study were Prof. Anette S. B. Wolff and Prof. Eystein S. Husebye from the University of Bergen and Haukeland University Hospital, Norway; Liad Glanz, Dr. Yonatan Herzig, Dr. Jan Dobeš, Dr. Noam Kadouri, Osher Ben-Nun, Amit Binyamin, Bar Lavi, Tal Givony, Razi Khalaila, Tom Gome and Carmel Sochen from Weizmann’s Immunology and Regenerative Biology Department; Dr. František Špoutil, Goretti Aranaz Novaliches, Dr. Blanka Mrázková, Dr. Radislav Sedláček and Dr. Jan Procházka from the Institute of Molecular Genetics of the Czech Academy of Sciences; Eng. Dr. Adriana Osičková, Dr. Tomáš Wald and Eng. Dr. Radim Osička from the Institute of Microbiology of the Czech Academy of Sciences; Prof. Mihaela Cuida Marthinussen from the University of Bergen and Oral Health Centre of Expertise, Norway; Marine Besnard and Dr. Carole Guillonneau from Nantes Université, France; Dr. Shifra Ben-Dor and Ester Feldmesser from Weizmann’s Life Sciences Core Facilities Department; Elizaveta M. Orlova from the Institute of Paediatric Endocrinology, Moscow; Prof. Csaba Hegedűs, Dr. István Lampé, Dr. Tamás Papp and Prof. Zsuzsa Szondy from the University of Debrecen, Hungary; Prof. Szabolcs Felszeghy from the University of Debrecen, Hungary, and the University of Eastern Finland; Prof. Esti Davidovich from the Hebrew University-Hadassah School of Dental Medicine; Dr. Noa Tal, Prof. Dror S. Shouval and Prof. Raanan Shamir from Schneider Children’s Medical Center of Israel; and Prof. Knut E. A. Lundin from the University of Oslo.

Prof. Jakub Abramson holds the Eugene and Marcia Applebaum Professorial Chair. His research is supported by Joseph and Sarah Bollag.

Enamel, the hardest and most mineral-rich substance in the human body, covers and protects our teeth. But in one of every 10 people – and in one third of children with celiac disease – this layer appears defective, failing to protect the teeth properly. As a result, teeth become more sensitive to heat, cold and sour food, and they may decay faster. In most cases, the cause of the faulty enamel production is unknown. 

Now, a study by Prof. Jakub Abramson and his team at the Weizmann Institute of Science, published recently in Nature, may shed light on this problem by revealing a new children’s autoimmune disorder that hinders proper tooth enamel development. The disorder is common in people with a rare genetic syndrome and in children with celiac disease. These findings could help develop strategies for early detection and prevention of the disorder.

Tooth enamel is made up primarily of mineral crystals that are gradually deposited on protein scaffolds during enamel development. Once the crystals are in place, the protein scaffold is dismantled, leaving behind a thin but exceptionally hard layer that covers and protects our teeth. A strange phenomenon was identified in people with a rare genetic disorder known as APS-1: Although the enamel layer of their milk teeth forms perfectly normally, something causes its faulty development in their permanent teeth. Since people with APS-1 suffer from a variety of autoimmune diseases, Abramson and his team hypothesized that the observed enamel defects may also be of an autoimmune nature – in other words, that their immune system could be attacking their own proteins or cells that are necessary for enamel formation. 

In general, autoimmune diseases occur when the immune system’s T cells or its antibodies mistakenly trigger an immune response against the body’s own cells or tissues. To prevent these incidents of “friendly fire,” T cells developing in the thymus gland need to first be educated to discriminate between the body’s own proteins and those of foreign origin. To this end, T cells are presented with short segments of self-proteins that make up various tissues and organs in the body. When a “poorly educated” T cell erroneously identifies a self-protein in the thymus as a target for attack, that T cell is labeled as dangerous and destroyed, so that it could not cause any damage after being released from the thymus.

This critical education step is impaired in APS-1 patients as a result of a mutation in a gene known as the autoimmune regulator (Aire). This gene is essential for the T cell education process: It produces a protein that is responsible for the collection of self-proteins presented to the T cells in the thymus. In their new study, scientists from Abramson’s lab in Weizmann’s Immunology and Regenerative Biology Department, led by research student Yael Gruper, sought to work out how mutations in the Aire gene lead to deficient tooth enamel production. The researchers discovered that, in the absence of Aire, proteins that play a key role in the development of enamel are not presented to the T cells in the thymus gland. As a result, T cells that are liable to identify these proteins as targets are released from the thymus, and they encourage the production of antibodies to the enamel proteins. But why do these autoantibodies damage permanent teeth and not baby teeth?

The answer to this question lies in the fact that milk teeth develop in the embryonic stage, when the immune system is not yet fully formed and cannot create autoantibodies. In contrast, the development of enamel on permanent teeth starts at birth and continues until around the age of six, when the immune system is sufficiently mature to thwart enamel development. Furthermore, the researchers found a correlation between high levels of antibodies to enamel proteins and the severity of the harm to enamel development in children with APS-1. This strengthens the assumption that the presence of enamel-specific autoantibodies in childhood can potentially lead to dental problems.

When the researchers looked into deficiencies in enamel development in people with other autoimmune diseases, they found a very similar phenomenon in children with celiac disease, a relatively common autoimmune disorder that affects around 1 percent of people in the West. When people with this disease are exposed to gluten, their immune system attacks and destroys the cellular layer lining the small intestine, leading to attacks on other self-proteins in the intestine.

In an attempt to understand how celiac disease, known to cause intestinal damage, may also cause damage to tooth enamel, the researchers first examined whether people with this disease have autoantibodies that attack enamel. They found that a large proportion of celiac patients have these autoantibodies, just as do people with APS-1. But the “education” that takes place in the thymus gland of these patients seems normal, so why do they develop these antibodies? The researchers hypothesized that some proteins are found in both the intestine and the dental tissue and that these proteins play an important role in the development of tooth enamel. In this case, the antibodies that identify proteins in the intestine might move through the bloodstream to the dental tissue, where they could start to disrupt the enamel production process.

Since many celiac patients had previously been found to develop sensitivity to cow’s milk, the researchers decided to focus on the k-casein protein, a major component of dairy products. Strikingly, they found that the human equivalent of k-casein is one of the main components of the scaffold necessary for enamel formation. This led them to hypothesize that antibodies produced in the intestines of celiac patients in response to certain food antigens, such k-casein, may subsequently cause collateral damage to the development of enamel in the teeth, similarly to the way in which antibodies against gluten can eventually trigger autoimmunity against the intestine.

Indeed, they discovered that most of the children diagnosed with celiac had high levels of antibodies against k-casein from cows’ milk, which in many cases can also react against k-casein’s human equivalent expressed in the enamel matrix. This means that in theory, the same antibodies that are produced in the intestine against the milk protein could act against the human k-casein in the teeth.

These findings could have implications for the food industry. “Similarly to the lessons learned from gluten, we can assume that the consumption of large quantities of dairy products could lead to the production of antibodies against k-casein,” Abramson explains. “This protein increases the amount of cheese that can be produced from milk, so the dairy industry deliberately raises its concentration in cow's milk. Our study, however, found that the milk k-casein is a potent immunogen, which may potentially trigger an immune response that can harm the body itself.”

Tooth enamel flaws are common, not just among people with celiac disease or APS-1. “Many people suffer from impaired tooth enamel development for unknown reasons,” Abramson says. “It is possible that the new disorder we discovered, along with the possibility of diagnosing it in a blood or saliva test, will give their condition a name. Most important, early diagnosis in children may enable preventive treatment in the future.”

Also participating in the study were Prof. Anette S. B. Wolff and Prof. Eystein S. Husebye from the University of Bergen and Haukeland University Hospital, Norway; Liad Glanz, Dr. Yonatan Herzig, Dr. Jan Dobeš, Dr. Noam Kadouri, Osher Ben-Nun, Amit Binyamin, Bar Lavi, Tal Givony, Razi Khalaila, Tom Gome and Carmel Sochen from Weizmann’s Immunology and Regenerative Biology Department; Dr. František Špoutil, Goretti Aranaz Novaliches, Dr. Blanka Mrázková, Dr. Radislav Sedláček and Dr. Jan Procházka from the Institute of Molecular Genetics of the Czech Academy of Sciences; Eng. Dr. Adriana Osičková, Dr. Tomáš Wald and Eng. Dr. Radim Osička from the Institute of Microbiology of the Czech Academy of Sciences; Prof. Mihaela Cuida Marthinussen from the University of Bergen and Oral Health Centre of Expertise, Norway; Marine Besnard and Dr. Carole Guillonneau from Nantes Université, France; Dr. Shifra Ben-Dor and Ester Feldmesser from Weizmann’s Life Sciences Core Facilities Department; Elizaveta M. Orlova from the Institute of Paediatric Endocrinology, Moscow; Prof. Csaba Hegedűs, Dr. István Lampé, Dr. Tamás Papp and Prof. Zsuzsa Szondy from the University of Debrecen, Hungary; Prof. Szabolcs Felszeghy from the University of Debrecen, Hungary, and the University of Eastern Finland; Prof. Esti Davidovich from the Hebrew University-Hadassah School of Dental Medicine; Dr. Noa Tal, Prof. Dror S. Shouval and Prof. Raanan Shamir from Schneider Children’s Medical Center of Israel; and Prof. Knut E. A. Lundin from the University of Oslo.

Prof. Jakub Abramson holds the Eugene and Marcia Applebaum Professorial Chair. His research is supported by Joseph and Sarah Bollag.

Saturday, December 2, 2023

Tissue regeneration to replace root canal treatment

Want to avoid a root canal? In the future, you might be able to opt for tissue regeneration instead. ADA Forsyth scientists are testing a novel technology to treat endodontic diseases (diseases of the soft tissue or pulp in your teeth) more effectively. The study, “RvE1 Promotes Axin2+Cell Regeneration and Reduces Bacterial Invasion,” which appeared in The Journal of Dental Research, demonstrates regenerative properties of resolvins, specifically Resolvin E1 (RvE1), when applied to dental pulp. Resolvins are part of a greater class of Specialized Proresolving Mediators (SPMs). This class of molecule is naturally produced by the body and is exquisitely effective in the control of excess inflammation associated with disease.

“Pulpitis (inflammation of dental pulp) is a very common oral health disease that can become a serious health condition if not treated properly,” said Dr. Thomas Van Dyke, Vice President at the Center for Clinical and Translational Research at ADA Forsyth, and a senior scientist leading the study. “Root canal therapy (RCT) is effective, but it does have some problems since you are removing significant portions of dentin, and the tooth dries out leading to a greater risk of fracture down the road. Our goal is to come up with a method for regenerating the pulp, instead of filling the root canal with inert material.”

Inflammation of this tissue is usually caused by damage to the tooth through injury, cavities or cracking, and the resulting infection can quickly kill the pulp and cause secondary problems if not treated.

The study applied RvE1 to different levels of infected and damaged pulp to explore its regenerative and anti-inflammatory capacities. There were two major findings. First, they showed RvE1 is very effective at promoting pulp regeneration when used in direct pulp-capping of vital or living pulp (replicating conditions of reversible pulpitis). They were also able to identify the specific mechanism supporting tissue regeneration.

Second, the scientists found that placing RvE1 on exposed and severely infected and necrotic pulp did not facilitate regeneration. However, this treatment did effectively slow down the rate of infection and treat the inflammation, preventing the periapical lesions (abscesses) that typically occur with this type of infection.  Previous publications have shown that if the infected root canal is cleaned before RvE1 treatment, regeneration of the pulp does occur. 

While this study focused on this technology in treating endodontic disease, the potential therapeutic impact is far reaching. Dr. Van Dyke explained, “because application of RvE1 to dental pulp promotes formation of the type of stem cells that can differentiate into dentin (tooth), bone, cartilage or fat, this technology has huge potential for the field of regenerative medicine beyond the tissues in the teeth. It could be used to grow bones in other parts of the body, for instance.”

The study was funded by Alvin Krakow Harvard/Forsyth Research Fund (Y. Wu), and USPHS grant DE025020 from the National Institute of Dental and Craniofacial Research (NIDCR) (T.E. Van Dyke).

Study authors include Yu-Chiao Wu, Ning Yu, Carla Alvarez Rivas, Nika Mehrnia, and Alpdogan Kantarci.

About The Forsyth Institute

The Forsyth Institute, founded in 1910, is the world’s leading independent research institution focused on oral health and its connection to overall wellness. Forsyth was founded as a pediatric dental hospital serving disadvantaged children in the Boston area. Today, the Institute is grounded in a 3-pillared strategic plan focused on biological research, clinical service and public health outreach, and technological innovation. Forsyth conducts its original mission through a mobile public health dental program called ForsythKids.